{ "id": "1201.2206", "version": "v1", "published": "2012-01-10T23:26:22.000Z", "updated": "2012-01-10T23:26:22.000Z", "title": "Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy", "authors": [ "M. Burak Erdogan", "William R. Green" ], "comment": "41 pages", "journal": "Trans. Amer. Math. Soc. 365 (2013), 6403-6440", "doi": "10.1090/S0002-9947-2013-05861-8", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We investigate $L^1(\\R^2)\\to L^\\infty(\\R^2)$ dispersive estimates for the Schr\\\"odinger operator $H=-\\Delta+V$ when there are obstructions, resonances or an eigenvalue, at zero energy. In particular, we show that the existence of an s-wave resonance at zero energy does not destroy the $t^{-1}$ decay rate. We also show that if there is a p-wave resonance or an eigenvalue at zero energy then there is a time dependent operator $F_t$ satisfying $\\|F_t\\|_{L^1\\to L^\\infty} \\lesssim 1$ such that $$\\|e^{itH}P_{ac}-F_t\\|_{L^1\\to L^\\infty} \\lesssim |t|^{-1}, \\text{for} |t|>1.$$ We also establish a weighted dispersive estimate with $t^{-1}$ decay rate in the case when there is an eigenvalue at zero energy but no resonances.", "revisions": [ { "version": "v1", "updated": "2012-01-10T23:26:22.000Z" } ], "analyses": { "keywords": [ "zero energy", "dispersive estimate", "schrödinger operators", "obstructions", "decay rate" ], "tags": [ "journal article" ], "publication": { "publisher": "AMS", "journal": "Trans. Amer. Math. Soc." }, "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.2206B" } } }