arXiv Analytics

Sign in

arXiv:1112.5469 [math.CA]AbstractReferencesReviewsResources

On Fourier transforms of radial functions and distributions

Loukas Grafakos, Gerald Teschl

Published 2011-12-22, updated 2013-02-18Version 4

We find a formula that relates the Fourier transform of a radial function on $\mathbf{R}^n$ with the Fourier transform of the same function defined on $\mathbf{R}^{n+2}$. This formula enables one to explicitly calculate the Fourier transform of any radial function $f(r)$ in any dimension, provided one knows the Fourier transform of the one-dimensional function $t\to f(|t|)$ and the two-dimensional function $(x_1,x_2)\to f(|(x_1,x_2)|)$. We prove analogous results for radial tempered distributions.

Comments: 12 pages
Journal: J. Fourier Anal. Appl. 19, 167-179 (2013)
Categories: math.CA, math-ph, math.AP, math.MP
Subjects: 42B10, 42A10, 42B37
Related articles: Most relevant | Search more
arXiv:1302.4070 [math.CA] (Published 2013-02-17, updated 2014-09-11)
Estimates for Fourier transforms of surface measures in R^3 and PDE applications
arXiv:1503.00105 [math.CA] (Published 2015-02-28)
Average decay of the Fourier transform of measures with applications
arXiv:1606.02913 [math.CA] (Published 2016-06-09)
On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case