{ "id": "1112.5469", "version": "v4", "published": "2011-12-22T21:36:59.000Z", "updated": "2013-02-18T14:38:20.000Z", "title": "On Fourier transforms of radial functions and distributions", "authors": [ "Loukas Grafakos", "Gerald Teschl" ], "comment": "12 pages", "journal": "J. Fourier Anal. Appl. 19, 167-179 (2013)", "doi": "10.1007/s00041-012-9242-5", "categories": [ "math.CA", "math-ph", "math.AP", "math.MP" ], "abstract": "We find a formula that relates the Fourier transform of a radial function on $\\mathbf{R}^n$ with the Fourier transform of the same function defined on $\\mathbf{R}^{n+2}$. This formula enables one to explicitly calculate the Fourier transform of any radial function $f(r)$ in any dimension, provided one knows the Fourier transform of the one-dimensional function $t\\to f(|t|)$ and the two-dimensional function $(x_1,x_2)\\to f(|(x_1,x_2)|)$. We prove analogous results for radial tempered distributions.", "revisions": [ { "version": "v4", "updated": "2013-02-18T14:38:20.000Z" } ], "analyses": { "subjects": [ "42B10", "42A10", "42B37" ], "keywords": [ "fourier transform", "radial function", "formula enables", "one-dimensional function", "two-dimensional function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1112.5469G" } } }