arXiv:1110.3566 [math.CO]AbstractReferencesReviewsResources
Asymptotics of the number of threshold functions on a two-dimensional rectangular grid
Pentti Haukkanen, Jorma K. Merikoski
Published 2011-10-17, updated 2012-09-20Version 2
Let $m,n\ge 2$, $m\le n$. It is well-known that the number of (two-dimensional) threshold functions on an $m\times n$ rectangular grid is {eqnarray*} t(m,n)=\frac{6}{\pi^2}(mn)^2+O(m^2n\log{n})+O(mn^2\log{\log{n}})= \frac{6}{\pi^2}(mn)^2+O(mn^2\log{m}). {eqnarray*} We improve the error term by showing that $$ t(m,n)=\frac{6}{\pi^2}(mn)^2+O(mn^2). $$
Related articles: Most relevant | Search more
arXiv:2007.03984 [math.CO] (Published 2020-07-08)
Asymptotics of the number of 2-threshold functions
arXiv:2004.03400 [math.CO] (Published 2020-04-05)
Singularity of $\{\pm 1\}$-matrices and asymptotics of the number of threshold functions
arXiv:1210.6061 [math.CO] (Published 2012-10-22)
Clusters, generating functions and asymptotics for consecutive patterns in permutations