{ "id": "1110.3566", "version": "v2", "published": "2011-10-17T03:03:20.000Z", "updated": "2012-09-20T08:40:29.000Z", "title": "Asymptotics of the number of threshold functions on a two-dimensional rectangular grid", "authors": [ "Pentti Haukkanen", "Jorma K. Merikoski" ], "categories": [ "math.CO", "cs.IT", "math.IT", "math.LO", "math.NT" ], "abstract": "Let $m,n\\ge 2$, $m\\le n$. It is well-known that the number of (two-dimensional) threshold functions on an $m\\times n$ rectangular grid is {eqnarray*} t(m,n)=\\frac{6}{\\pi^2}(mn)^2+O(m^2n\\log{n})+O(mn^2\\log{\\log{n}})= \\frac{6}{\\pi^2}(mn)^2+O(mn^2\\log{m}). {eqnarray*} We improve the error term by showing that $$ t(m,n)=\\frac{6}{\\pi^2}(mn)^2+O(mn^2). $$", "revisions": [ { "version": "v2", "updated": "2012-09-20T08:40:29.000Z" } ], "analyses": { "subjects": [ "03B50", "05A99", "11N37", "11P21" ], "keywords": [ "two-dimensional rectangular grid", "threshold functions", "asymptotics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1110.3566H" } } }