arXiv Analytics

Sign in

arXiv:1109.5341 [math.CO]AbstractReferencesReviewsResources

Optimal packings of Hamilton cycles in sparse random graphs

Michael Krivelevich, Wojciech Samotij

Published 2011-09-25Version 1

We prove that there exists a positive constant \epsilon such that if \log n / n \le p \le n^{-1+\epsilon}, then asymptotically almost surely the random graph G ~ G(n,p) contains a collection of \lfloor \delta(G)/2 \rfloor edge-disjoint Hamilton cycles.

Related articles: Most relevant | Search more
arXiv:1011.5443 [math.CO] (Published 2010-11-24, updated 2011-11-01)
Corrádi and Hajnal's theorem for sparse random graphs
arXiv:0908.4572 [math.CO] (Published 2009-08-31, updated 2013-07-07)
Edge-disjoint Hamilton cycles in graphs
arXiv:1207.2748 [math.CO] (Published 2012-07-11)
On the number of Hamilton cycles in sparse random graphs