{ "id": "1109.5341", "version": "v1", "published": "2011-09-25T08:46:23.000Z", "updated": "2011-09-25T08:46:23.000Z", "title": "Optimal packings of Hamilton cycles in sparse random graphs", "authors": [ "Michael Krivelevich", "Wojciech Samotij" ], "comment": "19 pages", "categories": [ "math.CO" ], "abstract": "We prove that there exists a positive constant \\epsilon such that if \\log n / n \\le p \\le n^{-1+\\epsilon}, then asymptotically almost surely the random graph G ~ G(n,p) contains a collection of \\lfloor \\delta(G)/2 \\rfloor edge-disjoint Hamilton cycles.", "revisions": [ { "version": "v1", "updated": "2011-09-25T08:46:23.000Z" } ], "analyses": { "subjects": [ "05C80", "05C35", "05C45", "05C70", "05D40" ], "keywords": [ "sparse random graphs", "optimal packings", "edge-disjoint hamilton cycles", "positive constant" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1109.5341K" } } }