arXiv Analytics

Sign in

arXiv:1108.1471 [math.FA]AbstractReferencesReviewsResources

Bellman inequality for Hilbert space operators

A. Morassaei, F. Mirzapour, M. S. Moslehian

Published 2011-08-06, updated 2013-03-31Version 2

We establish some operator versions of Bellman's inequality. In particular, we prove that if $\Phi: \mathbb{B}(\mathscr{H}) \to \mathbb{B}(\mathscr{K})$ is a unital positive linear map, $A,B \in \mathbb{B}(\mathscr{H})$ are contractions, $p>1$ and $0 \leq \lambda \leq 1$, then {eqnarray*} \big(\Phi(I_\mathscr{H}-A\nabla_{\lambda}B)\big)^{1/p}\ge\Phi\big((I_\mathscr{H}-A)^{1/p}\nabla_{\lambda}(I_\mathscr{H}-B)^{1/p}\big). {eqnarray*}

Comments: 6 pages, minor corrections
Journal: Linear Algebra Appl. 438 (2013) 3776-3780
Categories: math.FA, math.CA, math.OA
Subjects: 15A42, 46L05, 47A63, 47A30
Related articles: Most relevant | Search more
arXiv:2009.09892 [math.FA] (Published 2020-08-24)
On Some Numerical Radius Inequalities for Hilbert Space Operators
arXiv:1401.1804 [math.FA] (Published 2014-01-08, updated 2014-05-29)
Chebyshev type inequalities for Hilbert space operators
arXiv:1501.02939 [math.FA] (Published 2015-01-13)
Squaring operator Pólya--Szegö and Diaz--Metcalf type inequalities