arXiv Analytics

Sign in

arXiv:1501.02939 [math.FA]AbstractReferencesReviewsResources

Squaring operator Pólya--Szegö and Diaz--Metcalf type inequalities

Mohammad Sal Moslehian, Xiaohui Fu

Published 2015-01-13Version 1

We square operator P\'{o}lya--Szeg\"{o} and Diaz--Metcalf type inequalities as follows: If operator inequalities $0<m_{1}^{2} \leq A\leq M_{1}^{2}$ and $0<m_{2}^{2}\leq B\leq M_{2}^{2}$ hold for some positive real numbers $m_{1}\leq M_{1}$ and $m_{2}\leq M_{2}$, then for every unital positive linear map $\Phi$ the following inequalities hold: \begin{eqnarray*} (\Phi(A)\sharp\Phi(B))^2 &\leq&\left(\frac{M_1M_2 + m_1m_2}{2\sqrt{M_1M_2m_1m_2}}\right)^4\Phi(A\sharp B)^{2} \end{eqnarray*} and \begin{eqnarray*} \left( \frac{M_2m_2}{M_1m_1}\Phi (A) + \Phi (B) \right)^2 \leq \left( \frac{(M_1m_1(M_2^2 + m_2^2) + M_2m_2(M_1^2 + m_1^2))^2}{8\sqrt{M_2M_1m_1m_2} M_1^2m_1^2M_2m_2} \right)^2\Phi (A\sharp B)^2\,. \end{eqnarray*}

Comments: 10 pages, to appear in Linear Algebra Appl. (LAA)
Categories: math.FA, math.OA
Subjects: 47A30, 47A63, 46L05, 15A60
Related articles: Most relevant | Search more
arXiv:1201.5232 [math.FA] (Published 2012-01-25, updated 2012-05-01)
Problems and Conjectures in Matrix and Operator Inequalities
arXiv:1109.1778 [math.FA] (Published 2011-09-08)
Operator inequalities related to the Corach--Porta--Recht inequality
arXiv:2104.12931 [math.FA] (Published 2021-04-27)
Some Operator Inequalities via Convexity