arXiv Analytics

Sign in

arXiv:1107.2236 [math.CA]AbstractReferencesReviewsResources

Asymptotic zero distribution of a class of hypergeometric polynomials

K. A. Driver, S. J. Johnston

Published 2011-07-12Version 1

We prove that the zeros of ${}_2F_1(-n,\frac{n+1}{2};\frac{n+3}{2};z)$ asymptotically approach the section of the lemniscate $\{z: |z(1-z)^2|=4/27; \textrm{Re}(z)>1/3\}$ as $n\rightarrow \infty$. In recent papers (cf. \cite{KMF}, \cite{orive}), Mart\'inez-Finkelshtein and Kuijlaars and their co-authors have used Riemann-Hilbert methods to derive the asymptotic zero distribution of Jacobi polynomials $P_n^{(\alpha_n,\beta_n)}$ when the limits $\ds A=\lim_{n\rightarrow \infty}\frac{\alpha_n}{n}$ and $\ds B=\lim_{n\rightarrow \infty}\frac{\beta_n}{n}$ exist and lie in the interior of certain specified regions in the $AB$-plane. Our result corresponds to one of the transitional or boundary cases for Jacobi polynomials in the Kuijlaars Mart\'inez-Finkelshtein classification.

Related articles: Most relevant | Search more
arXiv:1506.03434 [math.CA] (Published 2015-06-10)
Trajectories of quadratic differentials for Jacobi polynomials with complex parameters
arXiv:2501.07138 [math.CA] (Published 2025-01-13)
Asymptotics for some $q$-hypergeometric polynomials
arXiv:1910.02271 [math.CA] (Published 2019-10-05)
The asymptotic zero distribution of Lommel polynomials as polynomials of the order with a variable complex argument