{ "id": "1107.2236", "version": "v1", "published": "2011-07-12T10:21:40.000Z", "updated": "2011-07-12T10:21:40.000Z", "title": "Asymptotic zero distribution of a class of hypergeometric polynomials", "authors": [ "K. A. Driver", "S. J. Johnston" ], "journal": "Quaestiones Mathematicae 30(2007), 219-230", "categories": [ "math.CA" ], "abstract": "We prove that the zeros of ${}_2F_1(-n,\\frac{n+1}{2};\\frac{n+3}{2};z)$ asymptotically approach the section of the lemniscate $\\{z: |z(1-z)^2|=4/27; \\textrm{Re}(z)>1/3\\}$ as $n\\rightarrow \\infty$. In recent papers (cf. \\cite{KMF}, \\cite{orive}), Mart\\'inez-Finkelshtein and Kuijlaars and their co-authors have used Riemann-Hilbert methods to derive the asymptotic zero distribution of Jacobi polynomials $P_n^{(\\alpha_n,\\beta_n)}$ when the limits $\\ds A=\\lim_{n\\rightarrow \\infty}\\frac{\\alpha_n}{n}$ and $\\ds B=\\lim_{n\\rightarrow \\infty}\\frac{\\beta_n}{n}$ exist and lie in the interior of certain specified regions in the $AB$-plane. Our result corresponds to one of the transitional or boundary cases for Jacobi polynomials in the Kuijlaars Mart\\'inez-Finkelshtein classification.", "revisions": [ { "version": "v1", "updated": "2011-07-12T10:21:40.000Z" } ], "analyses": { "subjects": [ "33C05", "30C15" ], "keywords": [ "asymptotic zero distribution", "hypergeometric polynomials", "jacobi polynomials", "kuijlaars martinez-finkelshtein classification", "result corresponds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.2236D" } } }