arXiv Analytics

Sign in

arXiv:1107.2042 [math.NT]AbstractReferencesReviewsResources

On the subconvexity problem for $GL(3)\times GL(2)$ $L$-functions

Rizwanur Khan

Published 2011-07-11Version 1

Fix $g$ a self-dual Hecke-Maass form for $SL_3(\mathbb{Z})$. Let $f$ be a holomorphic newform of prime level $q$ and fixed weight. Conditional on a lower bound for a short sum of squares of Fourier coefficients of $f$, we prove a subconvexity bound in the $q$ aspect for $L(s, g\times f)$ at the central point.

Related articles: Most relevant | Search more
arXiv:1801.02873 [math.NT] (Published 2018-01-09)
Vanishing of Hyperelliptic L-functions at the Central Point
arXiv:1804.01445 [math.NT] (Published 2018-04-04, updated 2024-09-17)
Average non-vanishing of Dirichlet $L$-functions at the central point
arXiv:math/0502186 [math.NT] (Published 2005-02-09, updated 2008-01-14)
Intersection de courbes et de sous-groupes, et problèmes de minoration de hauteur dans les variétés abéliennes C.M