{ "id": "1107.2042", "version": "v1", "published": "2011-07-11T14:37:10.000Z", "updated": "2011-07-11T14:37:10.000Z", "title": "On the subconvexity problem for $GL(3)\\times GL(2)$ $L$-functions", "authors": [ "Rizwanur Khan" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "Fix $g$ a self-dual Hecke-Maass form for $SL_3(\\mathbb{Z})$. Let $f$ be a holomorphic newform of prime level $q$ and fixed weight. Conditional on a lower bound for a short sum of squares of Fourier coefficients of $f$, we prove a subconvexity bound in the $q$ aspect for $L(s, g\\times f)$ at the central point.", "revisions": [ { "version": "v1", "updated": "2011-07-11T14:37:10.000Z" } ], "analyses": { "keywords": [ "subconvexity problem", "self-dual hecke-maass form", "central point", "holomorphic newform", "lower bound" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.2042K" } } }