arXiv Analytics

Sign in

arXiv:1105.0803 [math.CO]AbstractReferencesReviewsResources

Results on the intersection graphs of subspaces of a vector space

N. Jafari Rad, S. H. Jafari

Published 2011-05-04Version 1

For a vector space $V$ the \emph{intersection graph of subspaces} of $V$, denoted by $G(V)$, is the graph whose vertices are in a one-to-one correspondence with proper nontrivial subspaces of $V$ and two distinct vertices are adjacent if and only if the corresponding subspaces of $V$ have a nontrivial (nonzero) intersection. In this paper, we study the clique number, the chromatic number, the domination number and the independence number of the intersection graphs of subspaces of a vector space.

Related articles: Most relevant | Search more
arXiv:1110.1756 [math.CO] (Published 2011-10-08)
About dependence of the number of edges and vertices in hypergraph clique with chromatic number 3
arXiv:math/0208072 [math.CO] (Published 2002-08-09, updated 2003-11-24)
Topological lower bounds for the chromatic number: A hierarchy
arXiv:1412.6349 [math.CO] (Published 2014-12-19)
The chromatic number of a signed graph