{ "id": "1105.0803", "version": "v1", "published": "2011-05-04T12:29:07.000Z", "updated": "2011-05-04T12:29:07.000Z", "title": "Results on the intersection graphs of subspaces of a vector space", "authors": [ "N. Jafari Rad", "S. H. Jafari" ], "categories": [ "math.CO" ], "abstract": "For a vector space $V$ the \\emph{intersection graph of subspaces} of $V$, denoted by $G(V)$, is the graph whose vertices are in a one-to-one correspondence with proper nontrivial subspaces of $V$ and two distinct vertices are adjacent if and only if the corresponding subspaces of $V$ have a nontrivial (nonzero) intersection. In this paper, we study the clique number, the chromatic number, the domination number and the independence number of the intersection graphs of subspaces of a vector space.", "revisions": [ { "version": "v1", "updated": "2011-05-04T12:29:07.000Z" } ], "analyses": { "keywords": [ "vector space", "intersection graphs", "proper nontrivial subspaces", "one-to-one correspondence", "chromatic number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1105.0803J" } } }