arXiv Analytics

Sign in

arXiv:1103.1090 [math.NT]AbstractReferencesReviewsResources

The Abundancy Index of Divisors of Odd Perfect Numbers

Jose Arnaldo B. Dris

Published 2011-03-05, updated 2012-08-03Version 14

If $N = {q^k}{n^2}$ is an odd perfect number, where $q$ is the Euler prime, then we show that $n < q$ is sufficient for Sorli's conjecture that $k = \nu_{q}(N) = 1$ to hold. We also prove that $q^k < 2/3{n^2}$, and that $I(q^k) < I(n)$, where $I(x)$ is the abundancy index of $x$.

Comments: 10 pages
Journal: Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.4 - Available online at <https://cs.uwaterloo.ca/journals/JIS/VOL15/Dris/dris8.html>
Categories: math.NT
Subjects: 11A05, 11J25, 11J99
Related articles: Most relevant | Search more
arXiv:1309.0906 [math.NT] (Published 2013-09-04, updated 2015-02-11)
The Abundancy Index of Divisors of Odd Perfect Numbers - Part II
arXiv:1312.6001 [math.NT] (Published 2013-11-30, updated 2015-03-15)
The Abundancy Index of Divisors of Odd Perfect Numbers - Part III
arXiv:1311.6803 [math.NT] (Published 2013-11-10, updated 2014-10-03)
A Sufficient Condition for Disproving Descartes's Conjecture on Odd Perfect Numbers