{ "id": "1103.1090", "version": "v14", "published": "2011-03-05T23:34:43.000Z", "updated": "2012-08-03T14:05:57.000Z", "title": "The Abundancy Index of Divisors of Odd Perfect Numbers", "authors": [ "Jose Arnaldo B. Dris" ], "comment": "10 pages", "journal": "Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.4 - Available online at ", "categories": [ "math.NT" ], "abstract": "If $N = {q^k}{n^2}$ is an odd perfect number, where $q$ is the Euler prime, then we show that $n < q$ is sufficient for Sorli's conjecture that $k = \\nu_{q}(N) = 1$ to hold. We also prove that $q^k < 2/3{n^2}$, and that $I(q^k) < I(n)$, where $I(x)$ is the abundancy index of $x$.", "revisions": [ { "version": "v14", "updated": "2012-08-03T14:05:57.000Z" } ], "analyses": { "subjects": [ "11A05", "11J25", "11J99" ], "keywords": [ "odd perfect number", "abundancy index", "euler prime", "sorlis conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1103.1090D" } } }