arXiv:1103.0926 [math.NT]AbstractReferencesReviewsResources
The $χ$-part of the analytic class number formula, for global function fields
Published 2011-03-04Version 1
Let F/k be a finite abelian extension of global function fields, totally split at a distinguished place \infty. We prove that a complex Gras conjecture holds for a suitable group of Stark units, and we derive a refined analytic class number formula.
Comments: 10 pages
Journal: Bulletin of the Polish Academy of Sciences, Mathematics, no.60, pp. 123-132 (2012)
Categories: math.NT
Keywords: global function fields, complex gras conjecture holds, refined analytic class number formula, finite abelian extension, stark units
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1709.06697 [math.NT] (Published 2017-09-20)
Genus fields of finite abelian extensions
Jonny Fernando Barreto-Castañeda, Carlos Montelongo-Vázquez, Carlos Daniel Reyes-Morales, Martha Rzedowski-Calderón, Gabriel Villa-Salvador
arXiv:0803.3663 [math.NT] (Published 2008-03-26)
Unramified extensions and geometric $\mathbb{Z}_p$-extensions of global function fields
Mass formula of division algebras over global function fields