arXiv:1709.06697 [math.NT]AbstractReferencesReviewsResources
Genus fields of finite abelian extensions
Jonny Fernando Barreto-Castañeda, Carlos Montelongo-Vázquez, Carlos Daniel Reyes-Morales, Martha Rzedowski-Calderón, Gabriel Villa-Salvador
Published 2017-09-20Version 1
In this paper we find the genus field of a finite abelian extension of the global rational function field. We introduce the term conductor of constants for these extensions and determine it in terms of other invariants. We study the particular case of finite abelian $p$- extensions. Finally, we give an explicit description of the genus field of any finite abelian $p$--extension of a global rational function field.
Comments: 20 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2006.11870 [math.NT] (Published 2020-06-21)
Genus fields of Kummer $\ell^n$-cyclic extensions
arXiv:1512.08264 [math.NT] (Published 2015-12-27)
Genus Fields of Congruence Function Fields
arXiv:2204.01874 [math.NT] (Published 2022-04-04)
Function field genus theory for non-Kummer extensions