arXiv:1101.5224 [math.AP]AbstractReferencesReviewsResources
An isoperimetric inequality for eigenvalues of the bi-harmonic operator
Published 2011-01-27Version 1
} In this article, we put forward a Neumann eigenvalue problem for the bi-harmonic operator $\Delta^2$ on a bounded smooth domain $\Om$ in the Euclidean $n$-space ${\bf R}^n$ ($n\ge2$) and then prove that the corresponding first non-zero eigenvalue $\Upsilon_1(\Om)$ admits the isoperimetric inequality of Szeg\"o-Weinberger type: $\Upsilon_1(\Om)\le \Upsilon_1(B_{\Om})$, where $B_{\Om}$ is a ball in ${\bf R}^n$ with the same volume of $\Om$. The isoperimetric inequality of Szeg\"o-Weinberger type for the first nonzero Neumann eigenvalue of the even-multi-Laplacian operators $\Delta^{2m}$ ($m\ge1$) on $\Om$ is also exploited.
Comments: 12 pages
Related articles: Most relevant | Search more
arXiv:1306.1841 [math.AP] (Published 2013-06-07)
Isoperimetric inequality, $Q$-curvature and $A_p$ weights
arXiv:1803.07592 [math.AP] (Published 2018-03-20)
Critical domains for the first nonzero Neumann eigenvalue in Riemannian manifolds
arXiv:2006.13867 [math.AP] (Published 2020-06-24)
Sharp quantitative stability for isoperimetric inequalities with homogeneous weights