{ "id": "1101.5224", "version": "v1", "published": "2011-01-27T08:56:06.000Z", "updated": "2011-01-27T08:56:06.000Z", "title": "An isoperimetric inequality for eigenvalues of the bi-harmonic operator", "authors": [ "Q. Ding", "G. Feng", "Y. Zhang" ], "comment": "12 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "} In this article, we put forward a Neumann eigenvalue problem for the bi-harmonic operator $\\Delta^2$ on a bounded smooth domain $\\Om$ in the Euclidean $n$-space ${\\bf R}^n$ ($n\\ge2$) and then prove that the corresponding first non-zero eigenvalue $\\Upsilon_1(\\Om)$ admits the isoperimetric inequality of Szeg\\\"o-Weinberger type: $\\Upsilon_1(\\Om)\\le \\Upsilon_1(B_{\\Om})$, where $B_{\\Om}$ is a ball in ${\\bf R}^n$ with the same volume of $\\Om$. The isoperimetric inequality of Szeg\\\"o-Weinberger type for the first nonzero Neumann eigenvalue of the even-multi-Laplacian operators $\\Delta^{2m}$ ($m\\ge1$) on $\\Om$ is also exploited.", "revisions": [ { "version": "v1", "updated": "2011-01-27T08:56:06.000Z" } ], "analyses": { "keywords": [ "isoperimetric inequality", "bi-harmonic operator", "first nonzero neumann eigenvalue", "corresponding first non-zero eigenvalue", "neumann eigenvalue problem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1101.5224D" } } }