arXiv Analytics

Sign in

arXiv:1101.2587 [math.CA]AbstractReferencesReviewsResources

Radial projections of rectifiable sets

Tuomas Orponen, Tuomas Sahlsten

Published 2011-01-13, updated 2011-02-12Version 2

We show that if no $m$-plane contains almost all of an $m$-rectifiable set $E \subset \R^{n}$, then there exists a single $(m - 1)$-plane $V$ such that the radial projection of $E$ has positive $m$-dimensional measure from every point outside $V$.

Comments: 6 pages, 2 figures, typos corrected and added references. Accepted to Annales Academi{\ae} Scientiarum Fennic{\ae} Mathematica
Journal: Ann. Acad. Sci. Fenn. Math. 36 (2011), 677-681
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:1903.12093 [math.CA] (Published 2019-03-28)
On Hausdorff dimension of radial projections
arXiv:2011.14508 [math.CA] (Published 2020-11-30)
Regularity of the set of points with a non-unique metric projection
arXiv:1602.07629 [math.CA] (Published 2016-02-24)
A sharp exceptional set estimate for visibility