{ "id": "1101.2587", "version": "v2", "published": "2011-01-13T15:39:40.000Z", "updated": "2011-02-12T13:25:01.000Z", "title": "Radial projections of rectifiable sets", "authors": [ "Tuomas Orponen", "Tuomas Sahlsten" ], "comment": "6 pages, 2 figures, typos corrected and added references. Accepted to Annales Academi{\\ae} Scientiarum Fennic{\\ae} Mathematica", "journal": "Ann. Acad. Sci. Fenn. Math. 36 (2011), 677-681", "categories": [ "math.CA" ], "abstract": "We show that if no $m$-plane contains almost all of an $m$-rectifiable set $E \\subset \\R^{n}$, then there exists a single $(m - 1)$-plane $V$ such that the radial projection of $E$ has positive $m$-dimensional measure from every point outside $V$.", "revisions": [ { "version": "v2", "updated": "2011-02-12T13:25:01.000Z" } ], "analyses": { "keywords": [ "radial projection", "rectifiable set", "plane contains", "dimensional measure" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }