arXiv Analytics

Sign in

arXiv:1012.3348 [math.FA]AbstractReferencesReviewsResources

Topological centers of $n-$th dual of module actions

Kazem Haghnejad Azar, Abdolhamid Riazi

Published 2010-12-15Version 1

In this paper, we will study the topological centers of $n-th$ dual of Banach $A-module$ and we extend some propositions from Lau and \"{U}lger into $n-th$ dual of Banach $A-modules$ where $n\geq 0$ is even number. Let $B$ be a Banach $A-bimodule$. By using some new conditions, we show that ${{Z}^\ell}_{A^{(n)}}(B^{(n)})=B^{(n)}$ and ${{Z}^\ell}_{B^{(n)}}(A^{(n)})=A^{(n)}$. We also have some conclusions in group algebras.

Related articles: Most relevant | Search more
arXiv:1003.3377 [math.FA] (Published 2010-03-17)
The Topological Centers Of Module Actions
arXiv:2407.00489 [math.FA] (Published 2024-06-29)
Isometric Jordan isomorphisms of group algebras
arXiv:0909.4854 [math.FA] (Published 2009-09-26)
Multi-norms and modules over group algebras