{ "id": "1012.3348", "version": "v1", "published": "2010-12-15T14:36:50.000Z", "updated": "2010-12-15T14:36:50.000Z", "title": "Topological centers of $n-$th dual of module actions", "authors": [ "Kazem Haghnejad Azar", "Abdolhamid Riazi" ], "categories": [ "math.FA" ], "abstract": "In this paper, we will study the topological centers of $n-th$ dual of Banach $A-module$ and we extend some propositions from Lau and \\\"{U}lger into $n-th$ dual of Banach $A-modules$ where $n\\geq 0$ is even number. Let $B$ be a Banach $A-bimodule$. By using some new conditions, we show that ${{Z}^\\ell}_{A^{(n)}}(B^{(n)})=B^{(n)}$ and ${{Z}^\\ell}_{B^{(n)}}(A^{(n)})=A^{(n)}$. We also have some conclusions in group algebras.", "revisions": [ { "version": "v1", "updated": "2010-12-15T14:36:50.000Z" } ], "analyses": { "keywords": [ "topological centers", "th dual", "module actions", "group algebras", "propositions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.3348H" } } }