arXiv Analytics

Sign in

arXiv:1012.2605 [math.NA]AbstractReferencesReviewsResources

Rate of Convergence and Tractability of the Radial Function Approximation Problem

Gregory E. Fasshauer, Fred J. Hickernell, Henryk Woźniakowski

Published 2010-12-13Version 1

This article studies the problem of approximating functions belonging to a Hilbert space $H_d$ with an isotropic or anisotropic Gaussian reproducing kernel, $$ K_d(\bx,\bt) = \exp\left(-\sum_{\ell=1}^d\gamma_\ell^2(x_\ell-t_\ell)^2\right) \ \ \ \mbox{for all}\ \ \bx,\bt\in\reals^d. $$ The isotropic case corresponds to using the same shape parameters for all coordinates, namely $\gamma_\ell=\gamma>0$ for all $\ell$, whereas the anisotropic case corresponds to varying shape parameters $\gamma_\ell$. We are especially interested in moderate to large $d$.

Related articles: Most relevant | Search more
arXiv:math/9901122 [math.NA] (Published 1999-01-26)
Rates of convergence for the approximation of dual shift-invariant systems in $l_2(Z)$
arXiv:1202.4236 [math.NA] (Published 2012-02-20)
A study on new computational local orders of convergence
arXiv:1305.4071 [math.NA] (Published 2013-05-17)
Several Approaches to Break the Curse of Dimensionality