{ "id": "1012.2605", "version": "v1", "published": "2010-12-13T00:29:53.000Z", "updated": "2010-12-13T00:29:53.000Z", "title": "Rate of Convergence and Tractability of the Radial Function Approximation Problem", "authors": [ "Gregory E. Fasshauer", "Fred J. Hickernell", "Henryk Woźniakowski" ], "categories": [ "math.NA" ], "abstract": "This article studies the problem of approximating functions belonging to a Hilbert space $H_d$ with an isotropic or anisotropic Gaussian reproducing kernel, $$ K_d(\\bx,\\bt) = \\exp\\left(-\\sum_{\\ell=1}^d\\gamma_\\ell^2(x_\\ell-t_\\ell)^2\\right) \\ \\ \\ \\mbox{for all}\\ \\ \\bx,\\bt\\in\\reals^d. $$ The isotropic case corresponds to using the same shape parameters for all coordinates, namely $\\gamma_\\ell=\\gamma>0$ for all $\\ell$, whereas the anisotropic case corresponds to varying shape parameters $\\gamma_\\ell$. We are especially interested in moderate to large $d$.", "revisions": [ { "version": "v1", "updated": "2010-12-13T00:29:53.000Z" } ], "analyses": { "subjects": [ "65D15", "68Q17", "41A25", "41A63" ], "keywords": [ "radial function approximation problem", "tractability", "convergence", "anisotropic gaussian reproducing kernel", "anisotropic case corresponds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1012.2605F" } } }