arXiv Analytics

Sign in

arXiv:1011.1825 [math.NT]AbstractReferencesReviewsResources

Extreme values of the Dedekind $Ψ$ function

Patrick Solé, Michel Planat

Published 2010-11-08, updated 2011-01-18Version 2

Let $\Psi(n):=n\prod_{p | n}(1+\frac{1}{p})$ denote the Dedekind $\Psi$ function. Define, for $n\ge 3,$ the ratio $R(n):=\frac{\Psi(n)}{n\log\log n}.$ We prove unconditionally that $R(n)< e^\gamma$ for $n\ge 31.$ Let $N_n=2...p_n$ be the primorial of order $n.$ We prove that the statement $R(N_n)>\frac{e^\gamma}{\zeta(2)}$ for $n\ge 3$ is equivalent to the Riemann Hypothesis.

Comments: 5 pages, to appear in Journal of Combinatorics and Number theory
Journal: Journal of Combinatorics and Number Theory 3, 1 (2011) 1-6
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1006.0323 [math.NT] (Published 2010-06-02, updated 2012-07-26)
A few equalities involving integrals of the logarithm of the Riemann zeta-function and equivalent to the Riemann hypothesis III. Exponential weight functions
arXiv:math/0202141 [math.NT] (Published 2002-02-15, updated 2002-02-18)
A strengthening of the Nyman-Beurling criterion for the Riemann Hypothesis
arXiv:0806.1596 [math.NT] (Published 2008-06-10)
A few equalities involving integrals of the logarithm of the Riemann Zeta-function and equivalent to the Riemann hypothesis