{ "id": "1011.1825", "version": "v2", "published": "2010-11-08T15:21:51.000Z", "updated": "2011-01-18T12:38:26.000Z", "title": "Extreme values of the Dedekind $Ψ$ function", "authors": [ "Patrick Solé", "Michel Planat" ], "comment": "5 pages, to appear in Journal of Combinatorics and Number theory", "journal": "Journal of Combinatorics and Number Theory 3, 1 (2011) 1-6", "categories": [ "math.NT" ], "abstract": "Let $\\Psi(n):=n\\prod_{p | n}(1+\\frac{1}{p})$ denote the Dedekind $\\Psi$ function. Define, for $n\\ge 3,$ the ratio $R(n):=\\frac{\\Psi(n)}{n\\log\\log n}.$ We prove unconditionally that $R(n)< e^\\gamma$ for $n\\ge 31.$ Let $N_n=2...p_n$ be the primorial of order $n.$ We prove that the statement $R(N_n)>\\frac{e^\\gamma}{\\zeta(2)}$ for $n\\ge 3$ is equivalent to the Riemann Hypothesis.", "revisions": [ { "version": "v2", "updated": "2011-01-18T12:38:26.000Z" } ], "analyses": { "keywords": [ "extreme values", "riemann hypothesis", "equivalent" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1011.1825S" } } }