arXiv Analytics

Sign in

arXiv:1010.5941 [math.PR]AbstractReferencesReviewsResources

Uniqueness in Law of the stochastic convolution process driven by Lévy noise

Zdzisław Brzeźniak, Erika Hausenblas, Elżbieta Motyl

Published 2010-10-28, updated 2013-03-31Version 3

We will give a proof of the following fact. If $\mathfrak{A}_1$ and $\mathfrak{A}_2$, $\tilde \eta_1$ and $\tilde \eta_2$, $\xi_1$ and $\xi_2$ are two examples of filtered probability spaces, time homogeneous compensated Poisson random measures, and progressively measurable Banach space valued processes such that the laws on $L^p([0,T],{L}^{p}(Z,\nu ;E))\times \CM_I([0,T]\times Z)$ of the pairs $(\xi_1,\eta_1)$ and $(\xi_2,\eta_2)$ %, $i=1,2$, are equal, and $u_1$ and $u_2$ are the corresponding stochastic convolution processes, then the laws on $ (\DD([0,T];X)\cap L^p([0,T];B)) \times L^p([0,T],{L}^{p}(Z,\nu ;E))\times \CM_I([0,T]\times Z) $, where $B \subset E \subset X$, of the triples $(u_i,\xi_i,\eta_i)$, $i=1,2$, are equal as well. By $\DD([0,T];X)$ we denote the Skorokhod space of $X$-valued processes.

Related articles: Most relevant | Search more
arXiv:2007.06484 [math.PR] (Published 2020-07-13)
The continuum directed polymer in Lévy Noise
arXiv:1707.04895 [math.PR] (Published 2017-07-16)
Intermittency for the stochastic heat equation with Lévy noise
arXiv:1012.2484 [math.PR] (Published 2010-12-11, updated 2013-02-27)
Generalized covariation for Banach space valued processes, Itô formula and applications