{ "id": "1010.5941", "version": "v3", "published": "2010-10-28T12:36:59.000Z", "updated": "2013-03-31T13:17:09.000Z", "title": "Uniqueness in Law of the stochastic convolution process driven by Lévy noise", "authors": [ "Zdzisław Brzeźniak", "Erika Hausenblas", "Elżbieta Motyl" ], "categories": [ "math.PR" ], "abstract": "We will give a proof of the following fact. If $\\mathfrak{A}_1$ and $\\mathfrak{A}_2$, $\\tilde \\eta_1$ and $\\tilde \\eta_2$, $\\xi_1$ and $\\xi_2$ are two examples of filtered probability spaces, time homogeneous compensated Poisson random measures, and progressively measurable Banach space valued processes such that the laws on $L^p([0,T],{L}^{p}(Z,\\nu ;E))\\times \\CM_I([0,T]\\times Z)$ of the pairs $(\\xi_1,\\eta_1)$ and $(\\xi_2,\\eta_2)$ %, $i=1,2$, are equal, and $u_1$ and $u_2$ are the corresponding stochastic convolution processes, then the laws on $ (\\DD([0,T];X)\\cap L^p([0,T];B)) \\times L^p([0,T],{L}^{p}(Z,\\nu ;E))\\times \\CM_I([0,T]\\times Z) $, where $B \\subset E \\subset X$, of the triples $(u_i,\\xi_i,\\eta_i)$, $i=1,2$, are equal as well. By $\\DD([0,T];X)$ we denote the Skorokhod space of $X$-valued processes.", "revisions": [ { "version": "v3", "updated": "2013-03-31T13:17:09.000Z" } ], "analyses": { "subjects": [ "60H15", "60G57" ], "keywords": [ "stochastic convolution process driven", "lévy noise", "banach space valued processes", "compensated poisson random measures", "homogeneous compensated poisson random" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.5941B" } } }