arXiv Analytics

Sign in

arXiv:1010.1712 [math-ph]AbstractReferencesReviewsResources

Regularity for eigenfunctions of Schrödinger operators

Bernd Ammann, Catarina Carvalho, Victor Nistor

Published 2010-10-08, updated 2015-10-27Version 3

We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.

Comments: to appear in Lett. Math. Phys
Journal: Lett. Math. Phys. 101, 49-84 (2012)
Subjects: 35J10, 47F05, 58Z05, 65Z05
Related articles: Most relevant | Search more
arXiv:1211.4048 [math-ph] (Published 2012-11-16)
Schrödinger operators with concentric $δ$-shells
arXiv:0903.2267 [math-ph] (Published 2009-03-12, updated 2010-02-11)
On a sum rule for Schrödinger operators with complex potentials
arXiv:0712.2411 [math-ph] (Published 2007-12-14, updated 2008-03-09)
$L^\infty$-uniqueness of Schrödinger operators restricted in an open domain