{ "id": "1010.1712", "version": "v3", "published": "2010-10-08T15:01:34.000Z", "updated": "2015-10-27T13:55:59.000Z", "title": "Regularity for eigenfunctions of Schrödinger operators", "authors": [ "Bernd Ammann", "Catarina Carvalho", "Victor Nistor" ], "comment": "to appear in Lett. Math. Phys", "journal": "Lett. Math. Phys. 101, 49-84 (2012)", "doi": "10.1007/s11005-012-0551-z", "categories": [ "math-ph", "math.AP", "math.FA", "math.MP", "math.NA" ], "abstract": "We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\\\"odinger operator. More precisely, let K_{a}^{m}(\\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \\sum_{1 \\le j \\le N} \\frac{b_j}{|x_j|} + \\sum_{1 \\le i < j \\le N} \\frac{c_{ij}}{|x_i-x_j|}, x in \\mathbb{R}^{3N}, b_j, c_{ij} in \\mathbb{R}. If u in L^2(\\mathbb{R}^{3N}) satisfies (-\\Delta + V) u = \\lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \\in \\mathbb{Z}_+ and all a \\le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.", "revisions": [ { "version": "v2", "updated": "2012-02-17T16:20:46.000Z", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-10-27T13:55:59.000Z" } ], "analyses": { "subjects": [ "35J10", "47F05", "58Z05", "65Z05" ], "keywords": [ "schrödinger operators", "eigenfunctions", "weighted sobolev space", "coulomb type potential", "babuska-kondratiev spaces" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer", "journal": "Letters in Mathematical Physics", "year": 2012, "month": "Jul", "volume": 101, "number": 1, "pages": 49 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012LMaPh.101...49A" } } }