arXiv Analytics

Sign in

arXiv:1009.4427 [math.FA]AbstractReferencesReviewsResources

Variations on a theme of Beurling

Ronald G. Douglas

Published 2010-09-22Version 1

Interpretations of the Beurling-Lax-Halmos Theorem on invariant subspaces of the unilateral shift are explored using the language of Hilbert modules. Extensions and consequences are considered in both the one and multivariate cases with an emphasis on the classical Hardy, Bergman and Drury-Arveson spaces.

Related articles: Most relevant | Search more
arXiv:2003.09399 [math.FA] (Published 2020-03-20)
The invariant subspaces of $ S\oplus S^* $
arXiv:1703.04601 [math.FA] (Published 2017-03-14)
Invariant subspaces of $\mathcal{H}^2(\mathbb{T}^2)$ and $L^2(\mathbb{T}^2)$ preserving compatibility
arXiv:2307.06923 [math.FA] (Published 2023-07-13)
Invariant subspaces of the Cesaro operator