{ "id": "1009.4427", "version": "v1", "published": "2010-09-22T17:07:16.000Z", "updated": "2010-09-22T17:07:16.000Z", "title": "Variations on a theme of Beurling", "authors": [ "Ronald G. Douglas" ], "categories": [ "math.FA", "math.SP" ], "abstract": "Interpretations of the Beurling-Lax-Halmos Theorem on invariant subspaces of the unilateral shift are explored using the language of Hilbert modules. Extensions and consequences are considered in both the one and multivariate cases with an emphasis on the classical Hardy, Bergman and Drury-Arveson spaces.", "revisions": [ { "version": "v1", "updated": "2010-09-22T17:07:16.000Z" } ], "analyses": { "subjects": [ "46E22", "46J10", "47A15" ], "keywords": [ "variations", "beurling-lax-halmos theorem", "invariant subspaces", "unilateral shift", "hilbert modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.4427D" } } }