arXiv Analytics

Sign in

arXiv:1009.4225 [math.CO]AbstractReferencesReviewsResources

Two integer sequences related to Catalan numbers

Michel Lassalle

Published 2010-09-21, updated 2012-01-10Version 4

We prove the following conjecture of Zeilberger. Denoting by $C_n$ the Catalan number, define inductively $A_n$ by $(-1)^{n-1}A_n=C_n+\sum_{j=1}^{n-1} (-1)^{j} \binom{2n-1}{2j-1} A_j \,C_{n-j}$ and $a_n=2A_n/C_n$. Then $a_n$ (hence $A_n$) is a positive integer.

Comments: 15 pages, LaTeX, to appear in Journal of Combinatorial Theory, Series A
Journal: Journal of Combinatorial Theory, Series A 119 (2012), 923-935
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2104.04338 [math.CO] (Published 2021-04-09)
Two proofs of the $q,t$-symmetry of the generalized $q,t$-Catalan number $C_{(k_1,k_2,k_3)}(q,t)$
arXiv:math/0409147 [math.CO] (Published 2004-09-09, updated 2004-09-28)
Proof of a conjecture of Hadwiger
arXiv:0909.1612 [math.CO] (Published 2009-09-09)
$q,t$-Catalan numbers and generators for the radical ideal defining the diagonal locus of $(\C^2)^n$