{ "id": "1009.4225", "version": "v4", "published": "2010-09-21T22:06:08.000Z", "updated": "2012-01-10T20:29:50.000Z", "title": "Two integer sequences related to Catalan numbers", "authors": [ "Michel Lassalle" ], "comment": "15 pages, LaTeX, to appear in Journal of Combinatorial Theory, Series A", "journal": "Journal of Combinatorial Theory, Series A 119 (2012), 923-935", "categories": [ "math.CO" ], "abstract": "We prove the following conjecture of Zeilberger. Denoting by $C_n$ the Catalan number, define inductively $A_n$ by $(-1)^{n-1}A_n=C_n+\\sum_{j=1}^{n-1} (-1)^{j} \\binom{2n-1}{2j-1} A_j \\,C_{n-j}$ and $a_n=2A_n/C_n$. Then $a_n$ (hence $A_n$) is a positive integer.", "revisions": [ { "version": "v4", "updated": "2012-01-10T20:29:50.000Z" } ], "analyses": { "keywords": [ "integer sequences", "catalan number", "conjecture" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.4225L" } } }