arXiv:1009.0076 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Graphene field effect transistors with ferroelectric gating
Yi Zheng, Guang-Xin Ni, Chee-Tat Toh, Chin-Yaw Tan, Kui Yao, Barbaros Ozyilmaz
Published 2010-09-01Version 1
Recent experiments on ferroelectric gating have introduced a novel functionality, i.e. nonvolatility, in graphene field effect transistors. A comprehensive understanding in the non-linear, hysteretic ferroelectric gating and an effective way to control it are still absent. In this letter, we quantitatively characterize the hysteretic ferroelectric gating using the reference of an independent background doping (nBG) provided by normal dielectric gating. More importantly, we prove that nBG can be used to control the ferroelectric gating by unidirectionally shifting the hysteretic ferroelectric doping in graphene. Utilizing this electrostatic effect, we demonstrate symmetrical bit writing in graphene-ferroelectric FETs with resistance change over 500% and reproducible no-volatile switching over 10^5 cycles.