arXiv Analytics

Sign in

arXiv:1008.3099 [math.PR]AbstractReferencesReviewsResources

Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product

S. Belinschi, B. Collins, I. Nechita

Published 2010-08-18, updated 2012-02-27Version 3

Given two positive integers $n$ and $k$ and a parameter $t\in (0,1)$, we choose at random a vector subspace $V_{n}\subset \mathbb{C}^{k}\otimes\mathbb{C}^{n}$ of dimension $N\sim tnk$. We show that the set of $k$-tuples of singular values of all unit vectors in $V_n$ fills asymptotically (as $n$ tends to infinity) a deterministic convex set $K_{k,t}$ that we describe using a new norm in $\R^k$. Our proof relies on free probability, random matrix theory, complex analysis and matrix analysis techniques. The main result result comes together with a law of large numbers for the singular value decomposition of the eigenvectors corresponding to large eigenvalues of a random truncation of a matrix with high eigenvalue degeneracy.

Comments: v3 changes: minor typographic improvements; accepted version
Journal: Inventiones mathematicae, vol. 190, no. 3, 2012, pp. 647-697
Categories: math.PR, math.OA, quant-ph
Subjects: 15A52, 52A22, 46L54
Related articles: Most relevant | Search more
arXiv:math/0211192 [math.PR] (Published 2002-11-12, updated 2002-11-18)
Concentration of norms and eigenvalues of random matrices
arXiv:math/0606624 [math.PR] (Published 2006-06-24, updated 2007-12-12)
Eigenvalues of Euclidean Random Matrices
arXiv:2101.02928 [math.PR] (Published 2021-01-08)
The Eigenvalues of Random Matrices