{ "id": "1008.3099", "version": "v3", "published": "2010-08-18T14:54:26.000Z", "updated": "2012-02-27T09:23:54.000Z", "title": "Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product", "authors": [ "S. Belinschi", "B. Collins", "I. Nechita" ], "comment": "v3 changes: minor typographic improvements; accepted version", "journal": "Inventiones mathematicae, vol. 190, no. 3, 2012, pp. 647-697", "categories": [ "math.PR", "math.OA", "quant-ph" ], "abstract": "Given two positive integers $n$ and $k$ and a parameter $t\\in (0,1)$, we choose at random a vector subspace $V_{n}\\subset \\mathbb{C}^{k}\\otimes\\mathbb{C}^{n}$ of dimension $N\\sim tnk$. We show that the set of $k$-tuples of singular values of all unit vectors in $V_n$ fills asymptotically (as $n$ tends to infinity) a deterministic convex set $K_{k,t}$ that we describe using a new norm in $\\R^k$. Our proof relies on free probability, random matrix theory, complex analysis and matrix analysis techniques. The main result result comes together with a law of large numbers for the singular value decomposition of the eigenvectors corresponding to large eigenvalues of a random truncation of a matrix with high eigenvalue degeneracy.", "revisions": [ { "version": "v3", "updated": "2012-02-27T09:23:54.000Z" } ], "analyses": { "subjects": [ "15A52", "52A22", "46L54" ], "keywords": [ "large numbers", "random subspaces", "tensor product", "eigenvalues", "eigenvectors" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00222-012-0386-3", "journal": "Inventiones Mathematicae", "year": 2012, "month": "Dec", "volume": 190, "number": 3, "pages": 647 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012InMat.190..647B" } } }