arXiv Analytics

Sign in

arXiv:1007.0737 [math-ph]AbstractReferencesReviewsResources

The quantum $H_3$ integrable system

Marcos A. G. García, Alexander V. Turbiner

Published 2010-07-05Version 1

The quantum $H_3$ integrable system is a 3D system with rational potential related to the non-crystallographic root system $H_3$. It is shown that the gauge-rotated $H_3$ Hamiltonian as well as one of the integrals, when written in terms of the invariants of the Coxeter group $H_3$, is in algebraic form: it has polynomial coefficients in front of derivatives. The Hamiltonian has infinitely-many finite-dimensional invariant subspaces in polynomials, they form the infinite flag with the characteristic vector $\vec \al\ =\ (1,2,3)$. One among possible integrals is found (of the second order) as well as its algebraic form. A hidden algebra of the $H_3$ Hamiltonian is determined. It is an infinite-dimensional, finitely-generated algebra of differential operators possessing finite-dimensional representations characterized by a generalized Gauss decomposition property. A quasi-exactly-solvable integrable generalization of the model is obtained. A discrete integrable model on the uniform lattice in a space of $H_3$-invariants "polynomially"-isospectral to the quantum $H_3$ model is defined.

Related articles: Most relevant | Search more
arXiv:1011.2127 [math-ph] (Published 2010-11-09)
The quantum $H_4$ integrable system
arXiv:2307.14904 [math-ph] (Published 2023-07-27)
Recursions and ODEs for correlations in integrable systems and random matrices
arXiv:2303.13356 [math-ph] (Published 2023-03-23)
Integrable systems of finite type from F-cohomological field theories without unit