arXiv Analytics

Sign in

arXiv:1006.4405 [math.LO]AbstractReferencesReviewsResources

Characterization of $\ell_p$-like and $c_0$-like equivalence relations

Longyun Ding

Published 2010-06-23Version 1

Let $X$ be a Polish space, $d$ a pseudo-metric on $X$. If $\{(u,v):d(u,v)<\delta\}$ is ${\bf\Pi}^1_1$ for each $\delta>0$, we show that either $(X,d)$ is separable or there are $\delta>0$ and a perfect set $C\subseteq X$ such that $d(u,v)\ge\delta$ for distinct $u,v\in C$. Granting this dichotomy, we characterize the positions of $\ell_p$-like and $c_0$-like equivalence relations in the Borel reducibility hierarchy.

Comments: 8 pages, submitted
Categories: math.LO, math.GN
Subjects: 03E15, 54E35, 46A46
Related articles: Most relevant | Search more
arXiv:0804.4443 [math.LO] (Published 2008-04-28, updated 2008-04-29)
A new characterization of Baire class 1 functions
arXiv:math/0610988 [math.LO] (Published 2006-10-31)
Varia: Ideals and Equivalence Relations, beta-version
arXiv:math/0603506 [math.LO] (Published 2006-03-21)
Varia. Ideals and Equivalence Relations