{ "id": "1006.4405", "version": "v1", "published": "2010-06-23T02:12:18.000Z", "updated": "2010-06-23T02:12:18.000Z", "title": "Characterization of $\\ell_p$-like and $c_0$-like equivalence relations", "authors": [ "Longyun Ding" ], "comment": "8 pages, submitted", "categories": [ "math.LO", "math.GN" ], "abstract": "Let $X$ be a Polish space, $d$ a pseudo-metric on $X$. If $\\{(u,v):d(u,v)<\\delta\\}$ is ${\\bf\\Pi}^1_1$ for each $\\delta>0$, we show that either $(X,d)$ is separable or there are $\\delta>0$ and a perfect set $C\\subseteq X$ such that $d(u,v)\\ge\\delta$ for distinct $u,v\\in C$. Granting this dichotomy, we characterize the positions of $\\ell_p$-like and $c_0$-like equivalence relations in the Borel reducibility hierarchy.", "revisions": [ { "version": "v1", "updated": "2010-06-23T02:12:18.000Z" } ], "analyses": { "subjects": [ "03E15", "54E35", "46A46" ], "keywords": [ "equivalence relations", "characterization", "borel reducibility hierarchy", "perfect set" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.4405D" } } }