arXiv Analytics

Sign in

arXiv:1006.2121 [math.FA]AbstractReferencesReviewsResources

Compact differences of composition operators

Katherine Heller, Barbara D. MacCluer, Rachel J. Weir

Published 2010-06-10Version 1

When $\varphi$ and $\psi$ are linear-fractional self-maps of the unit ball $B_N$ in ${\mathbb C}^N$, $N\geq 1$, we show that the difference $C_{\varphi}-C_{\psi}$ cannot be non-trivially compact on either the Hardy space $H^2(B_N)$ or any weighted Bergman space $A^2_{\alpha}(B_N)$. Our arguments emphasize geometrical properties of the inducing maps $\varphi$ and $\psi$.

Related articles: Most relevant | Search more
arXiv:1607.00113 [math.FA] (Published 2016-07-01)
Rigidity of composition operators on the Hardy space $H^p$
arXiv:2010.04708 [math.FA] (Published 2020-10-09)
Composition Operators on $H(b)$ spaces of Unit Ball in $\mathbb{C}^n$
arXiv:2207.12635 [math.FA] (Published 2022-07-26)
Compact differences of composition operators on weighted Dirichlet spaces