{ "id": "1006.2121", "version": "v1", "published": "2010-06-10T19:17:36.000Z", "updated": "2010-06-10T19:17:36.000Z", "title": "Compact differences of composition operators", "authors": [ "Katherine Heller", "Barbara D. MacCluer", "Rachel J. Weir" ], "comment": "20 pages", "categories": [ "math.FA" ], "abstract": "When $\\varphi$ and $\\psi$ are linear-fractional self-maps of the unit ball $B_N$ in ${\\mathbb C}^N$, $N\\geq 1$, we show that the difference $C_{\\varphi}-C_{\\psi}$ cannot be non-trivially compact on either the Hardy space $H^2(B_N)$ or any weighted Bergman space $A^2_{\\alpha}(B_N)$. Our arguments emphasize geometrical properties of the inducing maps $\\varphi$ and $\\psi$.", "revisions": [ { "version": "v1", "updated": "2010-06-10T19:17:36.000Z" } ], "analyses": { "subjects": [ "47B33" ], "keywords": [ "composition operators", "compact differences", "unit ball", "linear-fractional self-maps", "hardy space" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1006.2121H" } } }