arXiv:1005.3990 [math.AG]AbstractReferencesReviewsResources
On codimension two subvarieties in hypersurfaces
N. Mohan Kumar, A. P. Rao, G. V. Ravindra
Published 2010-05-21Version 1
We show that for a smooth hypersurface $X\subset \bbP^n$ of degree at least 2, there exist arithmetically Cohen-Macaulay (ACM) codimension two subvarieties $Y\subset X$ which are not an intersection $X\cap{S}$ for a codimension two subvariety $S\subset\bbP^n$. We also show there exist $Y\subset X$ as above for which the normal bundle sequence for the inclusion $Y\subset X\subset\bbP^n$ does not split.
Comments: 8 pages
Journal: Motives and algebraic cycles, 167-174, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009
Categories: math.AG
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/9909137 [math.AG] (Published 1999-09-23)
On codimension two subvarieties of P6
arXiv:math/0401375 [math.AG] (Published 2004-01-27)
Caractères numériques
arXiv:math/0310376 [math.AG] (Published 2003-10-23)
Monomial invariants in codimension two