{ "id": "1005.3990", "version": "v1", "published": "2010-05-21T15:29:29.000Z", "updated": "2010-05-21T15:29:29.000Z", "title": "On codimension two subvarieties in hypersurfaces", "authors": [ "N. Mohan Kumar", "A. P. Rao", "G. V. Ravindra" ], "comment": "8 pages", "journal": "Motives and algebraic cycles, 167-174, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009", "categories": [ "math.AG" ], "abstract": "We show that for a smooth hypersurface $X\\subset \\bbP^n$ of degree at least 2, there exist arithmetically Cohen-Macaulay (ACM) codimension two subvarieties $Y\\subset X$ which are not an intersection $X\\cap{S}$ for a codimension two subvariety $S\\subset\\bbP^n$. We also show there exist $Y\\subset X$ as above for which the normal bundle sequence for the inclusion $Y\\subset X\\subset\\bbP^n$ does not split.", "revisions": [ { "version": "v1", "updated": "2010-05-21T15:29:29.000Z" } ], "analyses": { "subjects": [ "14M05", "14J60", "14M07" ], "keywords": [ "subvariety", "codimension", "normal bundle sequence", "smooth hypersurface" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.3990M" } } }