arXiv Analytics

Sign in

arXiv:1005.1528 [math.NT]AbstractReferencesReviewsResources

The Diophantine equation $x^4\pm y^4=iz^2$ in Gaussian integers

Filip Najman

Published 2010-05-10Version 1

In this note we find all the solutions of the Diophantine equation $x^4\pm y^4=iz^2$ using elliptic curves over $\mathbb Q(i)$. Also, using the same method we give a new proof of Hilbert's result that the equation $x^4\pm y^4=z^2$ has only trivial solutions in Gaussian integers.

Comments: 5 pages, to appear in Amer. Math. Monthly
Journal: Amer. Math. Monthly 117 (2010), 637-641
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1709.00400 [math.NT] (Published 2017-09-01)
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}=y^n$
arXiv:1006.1196 [math.NT] (Published 2010-06-07)
The Diophantine Equation $x^4 + 2 y^4 = z^4 + 4 w^4$---a number of improvements
arXiv:0812.0330 [math.NT] (Published 2008-12-01)
Polynomial parametrization of the solutions of Diophantine equations of genus 0