{ "id": "1005.1528", "version": "v1", "published": "2010-05-10T13:01:35.000Z", "updated": "2010-05-10T13:01:35.000Z", "title": "The Diophantine equation $x^4\\pm y^4=iz^2$ in Gaussian integers", "authors": [ "Filip Najman" ], "comment": "5 pages, to appear in Amer. Math. Monthly", "journal": "Amer. Math. Monthly 117 (2010), 637-641", "categories": [ "math.NT" ], "abstract": "In this note we find all the solutions of the Diophantine equation $x^4\\pm y^4=iz^2$ using elliptic curves over $\\mathbb Q(i)$. Also, using the same method we give a new proof of Hilbert's result that the equation $x^4\\pm y^4=z^2$ has only trivial solutions in Gaussian integers.", "revisions": [ { "version": "v1", "updated": "2010-05-10T13:01:35.000Z" } ], "analyses": { "keywords": [ "gaussian integers", "diophantine equation", "hilberts result", "trivial solutions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.1528N" } } }