arXiv Analytics

Sign in

arXiv:1005.1050 [math.FA]AbstractReferencesReviewsResources

Real analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces

D. Azagra, R. Fry, L. Keener

Published 2010-05-06, updated 2010-12-31Version 5

Let $X$ be a separable Banach space with a separating polynomial. We show that there exists $C\geq 1$ (depending only on $X$) such that for every Lipschitz function $f:X\rightarrow\mathbb{R}$, and every $\epsilon>0$, there exists a Lipschitz, real analytic function $g:X\rightarrow\mathbb{R}$ such that $|f(x)-g(x)|\leq \epsilon$ and $\textrm{Lip}(g)\leq C\textrm{Lip}(f)$. This result is new even in the case when $X$ is a Hilbert space. Furthermore, in the Hilbertian case we also show that $C$ can be assumed to be any number greater than 1.

Comments: Updated version with a sharper result in the Hilbertian case. One thin tube is enough. Some misprints corrected
Categories: math.FA
Subjects: 46B20
Related articles: Most relevant | Search more
arXiv:math/0206107 [math.FA] (Published 2002-06-11)
On sub B-convex Banach spaces
arXiv:1309.1219 [math.FA] (Published 2013-09-05, updated 2013-09-15)
Frames of subspaces in Hilbert spaces with $W$-metrics
arXiv:1211.2127 [math.FA] (Published 2012-11-06, updated 2014-06-11)
The splitting lemmas for nonsmooth functionals on Hilbert spaces I